
Xamrin – Future of Mobile development

Xamarin Forms is an abstraction framework from Microsoft which allows us

to reduce the amount of platform specific UI code required when creating

cross platform apps. Forms builds upon Xamarin’s existing technologies:

Xamarin.iOS and Xamarin.Android, and also allows for compilation to windows

platforms. UI’s can be created in C# or using Xamarin’s own dialect of the XAML

markup language. The idea behind Forms is to allow developers, especially

those in the enterprise, to further increase the amount of code-reuse

between platforms. Already, with Xamarin.iOS and Xamarin.Android, one

can see large amounts of code-sharing between platforms, especially when

engineering apps appropriately (using MVVM pattern, or similar

abstractions, correctly separating concerns, data and service layers).

How does Xamrin work?

Xamrin apps follow a similar pattern as that taken by MvvmCross (which is

a project forked from MonoCross, preferring MVVM to MVC). This is to say

that the platform provides view elements (containers, controls, views),

which are used in shared projects (typically PCL libraries). The actual

rendering of these views is handled by a “renderer” class, which acts as a

“presenter” for the core (shared) view classes. Renderers are written per-

platform. In this way, Forms can allow a developer to use general

abstracted views (such as Entry, or Button), which are then rendered and

behave natively on each platform.

What are the benefits to this approach?

For projects which require multi-platform presence there are many benefits:

Code sharing between platforms is further increased, as the view layer

code is now also shared. The “look” and (more importantly) feel of the

application fits the target platform, due to using native views and controls –

the performance is therefore also native. The platform is extensible and

configurable: developers can extend existing controls to provide native

features that Xamarin didn’t include out of the box, add new features, or

workaround bugs. Performance issues are mitigated, as the developer has

more options for resolving performance issues. Access is available to

native features of the device. Ability to integrate with Xamarin.Android and

Xamarin.iOS controls and classes. All the other benefits of Xamarin

platform (apps are written in C#6 across all platforms, Nuget packages,

excellent debugging, Xamarin’s additional features such as TestCloud,

great documentation, support, community, etc.) Many containers and

controls are supported out the box, which are suitable for creating

enterprise apps which do not have particularly taxing UI requirements.

Limitations of the approach

There are certain performance constraints which need to be understood:

XAML views are parsed at runtime, which adds additional overhead when

creating views – this is particularly felt in views with data templating (such

as lists) which create many Xamarin views (in fact, one per item in a list).

There is, of course, a certain overhead involved in creating the native views

(via the renderers). In most cases this is negligible but needs to be

understood. Not all APIs are mapped, so some features may not be

available, requiring the developer to extend renderers, or create new ones.

Developers need to be experienced and disciplined to get the most out of

the platform, due to the patterns used. Junior developers could rapidly find

themselves getting lost in a larger application with many renderers and

services. The standard containers are limiting for creating non-

standard/complex UIs. Performance of the container classes is pretty bad:

view measurement invalidation is particularly over-zealous in Forms,

leading to lots of lost performance.

How Xamarin perceives Xamarin Forms: “Xamarin Duplo”

This is currently a very hot topic on the Xamarin Forms forum. Forms has

been a bigger success than Xamarin probably anticipated. In just one year,

the Xamarin Forms forums have as much activity as any of the other

forums which have been around for a few years. The latest release note

had seven thousand views in 25 days.

Xamarin have been very clear about their intent for forms. Their website

itself states that forms is for:

• “Data entry apps, Prototypes and proofs-of-concept,

• Apps that require little platform-specific functionality,

• Apps where code sharing is more important than custom UI,”

Apparently they internally named the project Duplo. The idea being,

presumably that it would allow large chunky building blocks to enable

developers to rapidly create simple cross-platform apps. This is a great

strategy, aimed at the enterprise, and anyone who’s working in military,

government, banking, or other major industries are carrying out due

diligence for their respective organizations.

The simplistic/prototype app disclaimer is almost certainly an exercise in

setting expectations. Xamarin are under-promising and over-delivering.

Their documentation is littered with warnings to run for Xamarin.Android or

Xamarin.iOS at the first hint of a performance issue. The forums and bug

reports contain similar warnings from Xamarin staff in response to many

issues users face.

 UI / UX experience

Xamrin from Microsoft enables to write pretty much any kind of app you

wish, using reusable Xamarin Forms code. We can even write complex

view layouts and navigation using reusable code. Our current project has

>99% code reuse (outside of our XF code library) across all platforms.

I’ve found my (appearing arrogant; but just being honest) vast and deep

Adobe Flex knowledge to be shockingly applicable to Xamarin Forms

development. Many of the tricks and techniques I used to employ when

consulting clients on some of Flex’s toughest problems are transferable to

Forms. I get the impression that this is similar to the experience of those

coming from other disciplines, too.

The renderer system empowers us to create all manner of controls, and

further more compose all kinds of behaviors. This gives us the ability to

write small platform-specific “engines,” which do the heavy lifting for us,

and then re-use them, headache free, throughout our Forms code. All the

while churning out readable, MVVM compliant XAML, with testable View

models, and a consistent familiar codebase.

